F Test
A “F Test” is a catch-all term for any test that uses the F-distribution. In most cases, when people talk about the F-Test, what they are actually talking about is The F-Test to Compare Two Variances.
However, the f-statistic is used in a variety of tests including regression analysis, the Chow test and the Scheffe Test (a post-hoc ANOVA test).
F分布:
参见这里(这个网站有几本ebook可以参考)。
F分布怎么算的不重要,因为它是用来做判断的界限值用,一般用查F-table表的方法得到F值即可。
F test指的是任何用F分布(来得到界限值)来进行的测试。但通常情况下说的F test指的是比较两个方差。
其实F statistic可以用在很多test中,包括回归分析,Chow test,Scheffe Test和ANOVA test。
2.计算F值。F = s21 / s22
3.根据自由度(自由度=样本数减一)和显著水平(significance level),查表找出Fα。
4.比较计算的F值和Fα,如果F>Fα,就可以拒绝元假设。
详细点儿:
H0: (no change, no difference)
※有的书上对于upper one tailed定义为≦,lower one tailed定义为≧。
H1:
Upper one tailed:
Lower one tailed:
Two tailed:
判断基准:
Upper one tailed:
Lower one tailed:
Two tailed:
最简单的方法还是直接用工具(比如R)来做F test。因为计算F值是一个繁琐的过程。
教材里面说,F-test适用于正态分布(别的教科书似乎没有这么说)。
非正态分布的方差比较,教材里面说用levene test。
※http://www.socr.ucla.edu/applets.dir/f_table.html
※https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/f-test/
However, the f-statistic is used in a variety of tests including regression analysis, the Chow test and the Scheffe Test (a post-hoc ANOVA test).
F分布:
参见这里(这个网站有几本ebook可以参考)。
F分布怎么算的不重要,因为它是用来做判断的界限值用,一般用查F-table表的方法得到F值即可。
F test指的是任何用F分布(来得到界限值)来进行的测试。但通常情况下说的F test指的是比较两个方差。
其实F statistic可以用在很多test中,包括回归分析,Chow test,Scheffe Test和ANOVA test。
F-Test的做法
1.定义元假设(null hypothesis)和代替假设(alternative hypothesis)。2.计算F值。F = s21 / s22
3.根据自由度(自由度=样本数减一)和显著水平(significance level),查表找出Fα。
4.比较计算的F值和Fα,如果F>Fα,就可以拒绝元假设。
详细点儿:
H0: (no change, no difference)
※有的书上对于upper one tailed定义为≦,lower one tailed定义为≧。
H1:
Upper one tailed:
Lower one tailed:
Two tailed:
判断基准:
Upper one tailed:
Lower one tailed:
Two tailed:
最简单的方法还是直接用工具(比如R)来做F test。因为计算F值是一个繁琐的过程。
教材里面说,F-test适用于正态分布(别的教科书似乎没有这么说)。
非正态分布的方差比较,教材里面说用levene test。
F Test in R
F Test to Compare Two Variances
Description
Performs an F test to compare the variances of two samples from normal populations.Usage
var.test(x, ...) ## Default S3 method: var.test(x, y, ratio = 1, alternative = c("two.sided", "less", "greater"), conf.level = 0.95, ...) ## S3 method for class 'formula' var.test(formula, data, subset, na.action, ...)
Arguments
x, y | numeric vectors of data values, or fitted linear model objects (inheriting from class "lm" ). |
ratio | the hypothesized ratio of the population variances of x and y . |
alternative | a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" . You can specify just the initial letter. |
conf.level | confidence level for the returned confidence interval. |
formula | a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups. |
data | an optional matrix or data frame (or similar: see model.frame ) containing the variables in the formula formula . By default the variables are taken fromenvironment(formula) . |
subset | an optional vector specifying a subset of observations to be used. |
na.action | a function which indicates what should happen when the data contain NA s. Defaults to getOption("na.action") . |
... | further arguments to be passed to or from methods. |
Details
The null hypothesis is that the ratio of the variances of the populations from whichx
and y
were drawn, or in the data to which the linear models x
and y
were fitted, is equal to ratio
.Value
A list with class"htest"
containing the following components:statistic | the value of the F test statistic. |
parameter | the degrees of the freedom of the F distribution of the test statistic. |
p.value | the p-value of the test. |
conf.int | a confidence interval for the ratio of the population variances. |
estimate | the ratio of the sample variances of x and y . |
null.value | the ratio of population variances under the null. |
alternative | a character string describing the alternative hypothesis. |
method | the character string "F test to compare two variances" . |
data.name | a character string giving the names of the data. |
※https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/f-test/
0 Comments:
Post a Comment
<< Home